The TeraScale Computational Framework

TeraScale, LLC
P.O. Box 1396
Cedar Crest, NM 87008
www.terascale.net

Executive Summary

There is a quiet revolution taking place that will profoundly alter the evolution of finite
element application programs. The vortex of this revolution is the widespread availability
of large clusters of inexpensive computer processors. Even relatively small firms can
now afford to assemble a cluster of 100 3-GHz PCs running Linux. In order to make
efficient use of a large cluster of processors, it is necessary to perform the requisite finite
element calculations in parallel in a scaleable manner. There are subsets of the
available finite element algorithms (e.g. explicit dynamics, matrix-free conjugate
gradient) that can be parallelized in a straightforward manner. Even those algorithms
become challenging to parallelize when algorithms such as contact or multi-point
constraints are included. The vast majority of finite element applications are based upon
implicit algorithms in which case the linear algebra solver becomes the single most
important parallel challenge. They are inherently very difficult to scale and can run
inefficiently on even a small number of processors.

Converting an existing feature-rich finite element program to run in a scaleable manner
can be a daunting task. The TeraScale computational framework can be used to support
and simplify this effort. The framework provides the programming foundation upon which
the core finite element algorithms can run in parallel using much of its existing code.
The framework frees the finite element code developer from dealing with the computer
science aspects of parallel computing as well as providing many “common services”
necessary to such computation. These include: I/O Services; Memory Management:
Scattering & Gathering of Parallel Processes; Mathematical Libraries; Algorithmic
Control; and Linear Algebra Solution Services.

Why use Frameworks?

A framework represents a collection of software components for building applications.
By collecting these into a single toolkit, a framework enables the application developer to
leverage these components into many different applications. Consequently, the amount
of work (and code) required developing and maintaining an application is greatly
reduced.

Historically, the finite element applications developer has been an engineer trained in
some specific field of mechanics. Typically, they spend an inordinate portion of their
software development time dealing with computer science details rather than focusing
on algorithms and mechanics. The TeraScale finite element framework insulates the
engineer from the computer science details and lets the engineer concentrate on the
computational mechanics aspects of the application.

The realm of high performance, parallel, finite element applications provides a rich set of
common abstractions upon which to build a computational framework. Examples of
common services or tasks found in finite element applications include:

* 10 services

* Memory management

» Parallel gather/scatter operations and global reductions
* Mathematical libraries

* Algorithmic control

* Linear algebra solution services

The common thread that runs through all these services is that they are essentially
computer science/mathematical exercises that are not dependent upon physics
equations or formulations. It is precisely these services that require the most attention
when porting scientific applications between different hardware platforms. Generally, the
scientific or physics parts of any application compile, link and run correctly on disparate
hardware platforms with little porting effort. The vast majority of the porting effort goes
into dealing with the highly system dependent intricacies of such tasks as 10 services,
memory management and locating/linking the proper support libraries. By placing these
services into a common framework, all finite element applications built using the
framework leverage the porting efforts required to move between new hardware
platforms. Of course, they also leverage the considerable development time required to
write and debug them.

Parallel does not have to mean Difficult

The TeraScale framework architecture is designed to minimize the amount of
specialized parallel coding that the finite element applications developer must
understand and code. Ideally, the engineer simply writes code in a serial mode with no
regard for parallel issues. However, the application developer cannot be completely
isolated from all parallel issues. The computational framework provides the application
developer a set of interfaces that isolate the parallel coding to a few simple interfaces.

The TeraScale framework is based upon a “SPMD Model” (Single Program Multiple
Processor). The SPMD model is based upon the concept that the finite element mesh is
decomposed (i.e., partitioned) into a set of sub-meshes that are assigned to each
processor and spread onto the individual processors. Once the mesh is spread, each
processor executes a copy of the same application on the piece of the mesh that it has
been assigned. A fundamental aspect of the partitioning process is to embed into the
partitioned/spread sub-meshes the information about mesh entities that are shared by
multiple processors. These parallel data structures are discussed below in the
descriptions of mesh partitioning and the Parallel Mesh Object (PMO).

Other parallel programming paradigms can be used (e.g., threaded models), but
TeraScale believes the SPMD model provides the best balance for ease of use and for
scalability.

Today, it is possible to purchase a 64 processor Linux cluster (with whatever is the
current “fastest” PC chip) for less than $100K. These Linux clusters will continue to
grow in popularity simply because they are cheap and powerful.

The major task required for computing in a SPMD model is to move data back and forth
among processors. Within distributed memory architectures, this is done via message
passing using MPI, PVM, or other communication libraries. The physics algorithms
based on the finite element method and boundary element method have inherent points
of synchronization - places in the algorithms where multiple objects must write to some
other object. Hence, the algorithm cannot proceed until every processor finishes
sending/receiving messages. These points of synchronization are well characterized in
the finite element method and are generally referred to as gather/scatter/assemble
operations, or as global reduction operations. The framework has abstractions
(interfaces) for these operations (i.e., the developer does not make calls to the MPI
library directly). Furthermore, these interfaces insulate the application from the particular
message passing library that is used by the framework. Today, the TeraScale
framework uses MPI| as the message passing library. However, finite element
applications have a very long life and perhaps in the next decade some new, better,
faster, etc., message passing library will become available. Should that occur, TeraScale
will re-implement the methods that serve the applications parallel needs and the
mechanics application will not have to change any lines of code.

The TeraScale framework hides these parallel aspects behind well-defined interfaces
that are familiar to the finite element applications developer. Think of the framework as a
highly efficient data delivery system. The framework delivers the data to application
when and where it is required. This description may sound as if there is very little going
on in the framework. In reality, there is a tremendous level of complexity involved in
delivering this data in a reliable and scalable manner. The services that the framework
provides are inherently platform dependent. The framework allows this porting effort to
be performed once, and then leverages it across all applications

One important guideline that is inherent in the design of the finite element framework is
that there be no performance penalty for running (the parallel framework code) on a
single processor. In general, applications built upon the framework should run
seamlessly on any of:

* Asingle processor CPU.

* Parallel hardware based upon shared memory architecture.
* Distributed memory architectures.

* Clusters of shared memory machines.

No parallel application scales perfectly. However the framework should scale according
to the limit of the underlying algorithms, as long as the model is large enough to warrant
using more processors. A good rule of thumb is that each processor should have at least
20K degrees of freedom. The actual parallel performance is tied to the ratio of the
number of degrees of freedom in the problem to the number of shared degrees of
freedom between processors. Inter-processor communications is typically three orders
of magnitude slower that memory bandwidth speeds on a single processor. The
application must amortize the cost of inter-processor communications over a large
number of floating point operations between communication calls.

What about my Legacy Fortran Code?

When we refer to the “framework,” we are really describing a collection of sub-systems
that provide the complete toolkit (i.e., a set of components) necessary to build complex
parallel applications. The TeraScale framework is written primarily in the C++

programming language. There are large bodies of the TeraScale libraries (e.g., math
library, element library, etc.) written in Fortran and TeraScale has made it easy to call
Fortran from the C++ classes. These libraries also provide a Fortran binding so that they
can be called directly from other Fortran subroutines. There is a huge body of well-used
Fortran legacy applications that simply cannot be set aside and re-written in C++. In fact,
it is difficult to achieve the performance levels in C++ that can be achieved in Fortran
since the Fortran language is inherently designed for computations with multi-
dimensional arrays. The memory management, found in the framework and the Parallel
Mesh Obiject, is carefully crafted to lay out the fields as blocked Fortran-like arrays so
that they are easy to pass to Fortran.

To “re-write” an existing application using our framework is an exercise in picking and
choosing which pieces to keep. Think of a legacy Fortran application as a jigsaw puzzle
where each piece is a Fortran subroutine. Throw the pieces out on the table and then
begin plugging them back into the new framework-based application in the appropriate
spots.

The Framework Procedural Base Classes

The concept of writing “object oriented” code is sometimes taken to extremes. Certainly,
the TeraScale framework is object oriented, but if taken too far, the concept looses all
hope of achieving high performance. TeraScale strikes a balance by recognizing that the
finite element method is inherently procedural in nature.

The TeraScale framework provides a pre-defined set of abstractions for the procedural
flow of algorithms in the finite element application. These are in the form of a set of C++
abstract base classes. An abstract base class is one that cannot be used directly —
specific concrete derived classes provide the implementation of some required methods
in the class with specific interfaces. The derived class inherits a large amount of
functionality from the base class. That is why the abstraction exists in the first place —
there is some large body of common functionality.

The set of abstract base classes in the framework contains:

* Procedure — a defined set of physics (physics objects). The procedure object’s
main job is to manage the time marching algorithm. This includes advancing the
state of the fields and global reductions and reading/writing the state for the
model. Loose coupling between multiple physics is orchestrated by the
procedure.

* Physics — a single subset of physics. Generally, this represents a single physics
but it could hold tightly coupled multi-physics where the set of physics is coupled
through the solver.

The Physics’ main job is to advance the solution one increment in “time” at the
request of the Procedure. The physics layer of the framework maps cleanly onto
the traditional notion of a finite element code. This is where the concept of a
mesh first appears. The physics object registers the nodal fields required for the
computations and often registers fields on node, edge, and face sets. It also
constructs and owns a set of the element blocks based on the attributes of the
mesh and the physics to be performed.

* Element Block — a collection of finite elements that have the same topology and
section/subsection/material hierarchy. An element block object is derived to hold

a particular element and physics formulation. An element block uses one or
more element objects to compute the element formulation.

The element block has a collection of member elements, each of which is
processed through some element object. It is important to realize that an
element object holds methods, while the member elements of the element block
hold data. The member elements are pumped through those methods to
compute the values of their data.

The element block object is responsible for registering all the element fields
required for the computation.

* Section — the section object holds the physical representation of the element at
each integration station of the element. The section object also holds algorithms
to integrate the section. For solid elements, the section only holds the material
object (see below). For a complicated element, such as a layered shell, the
section holds descriptions for the geometric lay-up of the shell layers, the
integration rules for integrating through the layers, and the material objects for
each of the layers. A section object may hold a collection of section objects (i.e.,
subsections) and/or a material. Usually, it holds one or the other. When it does
hold subsections, it also holds the algorithm to assemble each subsection’s
contribution to the section.

* Material — a material object integrates the material response through time at a
set of material points in the model. It holds a collection of algorithms for
accomplishing this task.

What does the derived class have to implement? The minimum requirement is to
implement two methods: initialize (..) and execute (..) . In these methods the
application registers and initializes any of the required fields and provides the particular
mechanics algorithms required by the application.

In most applications the procedural flow is invoked once for the initialize (..)
method and then many times for the execute (..) method. The specific application is
free to implement any other methods as part of the derived class and call any Fortran
methods that may be available.

The flow of the application proceeds downward through all derived classes arranged in a
tree. The main program will invoke the execute (..) method of its Procedure classes in
the appropriate order. Each Procedure class calls the execute (..) method of its
Physics classes using its particular algorithm. The Physics classes execute their element
block execution methods. The element block classes execute their Section execution
methods, which execute their Material execution methods. In each “level” of the tree, the
program control is determined by the particular implementation of the initialize(..)
and execute (..) methods.

Partitioning the Model for a SPMD Framework

In the Single Program Multiple Processor (SPMD) parallel programming model, the finite

element mesh must be partitioned across the set of processors. There are numerous
partitioning algorithms that can be used. The two most common are topological
partitioning and geometrical partitioning. In the topological case, the partitioner
application performs a graph analysis of the connection of the mesh to minimize the
number of shared nodes across processor boundaries. A geometrical partitioner uses

some algorithm to slice up the mesh is space and is typically much faster than a
topological partitioner. In general, applications will run slightly faster with a good
topological partitioning than with a simple geometric partitioning. However, there are
numerous finite element algorithms that require a geometric partitioning (e.g., contact
between two bodies) in order to achieve parallel performance. TeraScale provides a
geometric partitioner application, which is based upon the recursive coordinate bisection
algorithm. The TeraScale partitioner is designed to be able to accommodate new
algorithms in the future should they be deemed necessary or desirable.

Figure 1 shows a simple mesh and its partitioning across 4 processors. The mesh
contains nodes, edges, faces, and elements, referred to as “mesh entities.” The nodes,
edges, and faces that reside on the inter-processor boundaries (shown in red) are
shared between multiple processors (in certain cases, elements can be shared as well).
TeraScale’s implementation of the SPMD model requires that one processor own the
mesh entity while the other processors simply have a copy of the mesh entity. Also, our
SPMD model requires every mesh entity to have a unique global ID (i.e., unique across
all processors).

The partitioner application reads in the original mesh and spreads it into pieces for each
processor. Figure 1, shows the mesh partitioned into four pieces, each of which resides
in its own mesh file after partitioning.

Processorl Processor 1

Processor 2 Processor 3

Original Mesh Partitioned Mesh
Single Processor Four Processors

Figure 1. A four way partitioning of a simple mesh.

While not formally a part of the computational framework, the partitioning services are a
fundamental infrastructure requirement for deploying parallel finite element applications.
Furthermore, the SPMD model usually takes advantage of independent parallel 10. That
is, each processor can write output to its own independent disk (hence there is no
contention for the disk amongst processors). As a consequence, upon completion of the

analysis, there may be a set of files that must be recombined (e.g., results files, restart
files, history files). This calls for a “departitioner” service that puts them back together
again. The partitioner and departitioner services are provided along with the TeraScale
framework.

The Parallel Mesh Object (PMO)

The finite element mesh must have a representation both in memory and on permanent
storage (i.e., file). Above, in the discussion of the partitioning services, the mesh is
spread into a set of sub-mesh files; one for each processor. The actual mesh file is
written in a neutral file format. Most commercially available file formats do a good job of
representing a mesh on a single processor in that they support the generality of
numerous materials defined on a collection of common element types. They support
boundary conditions and loads through a general notion of sets (e.g., node sets, edge
sets, face sets, element sets). However, when viewed in the context of partitioned
meshes as in Figure 1, they often lack the data structures to define the shared entities
(nodes, edges, faces, and elements). Furthermore, they often lack the concept of a
unique global ID for each and every mesh entity. Such global IDs are a requirement for
parallel computations.

The TeraScale framework makes use of the TeraScale Parallel Mesh Object (PMO) to
represent the mesh. The PMO is a stand-alone library that can be deployed independent
of the TeraScale framework. The PMO provides a coherent array of services for
computing on a mesh spread over some set of processors. Think of the PMO as a virtual
mesh object that is cognizant of where all its pieces reside across the parallel platform.
The concept of general subsetting mechanisms for nodes, edges, faces, and edges is
supported, with full capabilities to create, query, and access the mesh data.

The PMO contains the abstraction of mesh readers and mesh writers. These define a
set of interfaces for reading and writing finite element data to permanent storage. The
concept is quite simple; the application accesses data through the set of interfaces
defined upon the mesh object. The mesh object performs read/write on demand (i.e., it
does not read/write anything from file unless requested to do so). The particular flavor of
mesh reader or mesh writer that is given to the mesh object can be changed at run time.
Mesh readers and writers for alternate mesh formats can be derived with minimal effort.
The advantage is that any finite element application can use a new mesh reader without
changing any code in the finite element application. If the finite element application reads
and writes its mesh through the PMO, then it can instantly leverage any new file formats
available through the library of mesh readers and mesh writers.

One of the fundamental reasons for developing a computational framework is to provide
a mechanism for developing multiple applications that leverage an existing body of code.
The environment provided by the framework creates a set of conventions that enable
coupling multiple applications to solve more complex multi-field problems. To this end,
the TeraScale framework and the PMO provide a set of specifications of how
mathematical fields are defined and represented. A mathematical field has a designated
math type of scalar, vector, tensor, or quaternion. The math type is further characterized
by special cases of vectors, tensors and quaternion depending on the particular tensor
or vector space required by the field. (Quaternions are a mathematical representation of
finite rotations). The math type provides more information than just the number of
components in the field. It provides a convention for the ordering of those components
in the array-based representation of the field within the computer. For example a
symmetric tensor in three dimensions has six components. The framework specifies

those components are defined as an array of length six in the order of components: 11,
22, 33, 12, 23, and 31. A three dimensional quaternion is defined as an array of length
four in the order of components: X, Y, Z, and Q.

The PMO also supports field management. The application can register fields with
attributes on subsets of the mesh. For example, an application might register a vector
valued displacement field over all the nodes in the mesh. The field management
functionality is extremely flexible. It provides memory management of the fields as well
as the ability to marshal the fields to permanent storage repeatedly during an analysis.
For example, the displacement field described above represents a state field that must
be saved to permanent storage in order to restart the finite element application. There is
one copy of the displacement field in memory, but there may be many copies of that field
saved on the restart file under different time stamp values.

The PMO provides the run time parallel 10 services required by the application and the
partitioner and departioner services. The partitioner and departioner services operate
upon PMO mesh objects and the fields defined on them. Hence, it is possible to map
from M processors to N processors (e.g., run an analysis on 4 processors and then
restart it on 8 processors).

Of considerable importance is the fact that the PMO has parallel services to generate a
unique set of global IDs for all the mesh entities. This is a challenging task in parallel and
its significance to many finite element applications is enormous. Referring again to
Figure 1, typically the initial mesh comes is represented using some neutral file format
and is partitioned as shown. The partitioner application uses the PMO and the
appropriate mesh reader to read in the mesh, determine the proper decomposition and
spread the sub-meshes to the individual processors using a mesh writer. While the usual
“plain vanilla” finite element application typically uses nodal degrees of freedom, many
finite element applications are dependent upon edge, face and element degrees of
freedom. Hence, the partitioned mesh may have all the shared node and element
information and unique global node and element IDs, but lacks any information about the
unique set of edges and faces. The PMO provides methods to generate the unique set
of all edges and faces within a mesh using an order N algorithm where N is the number
of elements in the mesh. This is a significant capability in a serial application and very
difficult to achieve in parallel. Furthermore, the PMO generates (in parallel) unique global
IDs for each and every edge and face in the mesh and establishes all the sharing
information and the processor owning information required for the computations to
proceed.

Common Mathematical Methods

The framework contains a set of mathematical methods that may be applied to fields of
scalars, vectors, tensors and quaternions. The set of methods represents a common set
of operations found in almost all finite element applications. They include:

* Create a rotation matrix from a quaternion.

* Create a quaternion from a rotation matrix.

* Incrementally update quaternion from a rotation vector.

* Compute eigenvalues and eigenvectors of a symmetric tensor.

* Rotation of symmetric tensors.

* Rotation of vectors.

* Solve symmetric set of NxN equations at a point (N small, not to be confused
with a linear algebra solver over the entire mesh).

Linear Algebra Solution Services

The TeraScale Framework provides a common interface to linear solver services for
scalable solution of sparse systems of equations on distributed and shared memory
parallel architectures. The interface to linear algebra packages is based upon a finite
element view of the process that augments the native solver view. The underlying linear
algebra representation of the assembled global element operators and right-hand-sides
is hidden from the physics application developer. This abstraction layer allows the
interchange or selection of different linear algebra solvers and/or preconditioners without
modifying the physics implementation.

TeraScale provides a parallel direct solver package as well as a library of Krylov based
iterative solvers with various preconditioners.

The solver interface provides direct support for node, edge, face and element degrees of
freedom.

Acknowledgments

The TeraScale framework and supporting libraries were funded in part by:
* Engineering Sciences Directorate of Lawrence Livermore National Laboratories
under contract No. B503619.
* Sandia National Laboratories Livermore under contract No. 13024.
* National Science Foundation under Grant No. CMS-0112950

